61 research outputs found

    Comment on "Ruling out chaos in compact binary systems"

    Get PDF
    In a recent Letter, Schnittman and Rasio argue that they have ruled out chaos in compact binary systems since they find no positive Lyapunov exponents. In stark constrast, we find that the chaos discovered in the original paper under discussion, J.Levin, PRL, 84 3515 (2000), is confirmed by the presence of positive Lyapunov exponents.Comment: 1 page. Published Versio

    Big Black Hole, Little Neutron Star: Magnetic Dipole Fields in the Rindler Spacetime

    Get PDF
    As a black hole and neutron star approach during inspiral, the field lines of a magnetized neutron star eventually thread the black hole event horizon and a short-lived electromagnetic circuit is established. The black hole acts as a battery that provides power to the circuit, thereby lighting up the pair just before merger. Although originally suggested as a promising electromagnetic counterpart to gravitational-wave detection, the luminous signals are promising more generally as potentially detectable phenomena, such as short gamma-ray bursts. To aid in the theoretical understanding, we present analytic solutions for the electromagnetic fields of a magnetic dipole in the presence of an event horizon. In the limit that the neutron star is very close to a Schwarzschild horizon, the Rindler limit, we can solve Maxwell's equations exactly for a magnetic dipole on an arbitrary worldline. We present these solutions here and investigate a proxy for a small segment of the neutron star orbit around a big black hole. We find that the voltage the black hole battery can provide is in the range ~10^16 statvolts with a projected luminosity of 10^42 ergs/s for an M=10M_sun black hole, a neutron star with a B-field of 10^12 G, and an orbital velocity ~0.5c at a distance of 3M from the horizon. Larger black holes provide less power for binary separations at a fixed number of gravitational radii. The black hole/neutron star system therefore has a significant power supply to light up various elements in the circuit possibly powering jets, beamed radiation, or even a hot spot on the neutron star crust.Comment: Published in Physical Review D: http://link.aps.org/doi/10.1103/PhysRevD.88.06405

    Dynamics of Black Hole Pairs II: Spherical Orbits and the Homoclinic Limit of Zoom-Whirliness

    Full text link
    Spinning black hole pairs exhibit a range of complicated dynamical behaviors. An interest in eccentric and zoom-whirl orbits has ironically inspired the focus of this paper: the constant radius orbits. When black hole spins are misaligned, the constant radius orbits are not circles but rather lie on the surface of a sphere and have acquired the name "spherical orbits". The spherical orbits are significant as they energetically frame the distribution of all orbits. In addition, each unstable spherical orbit is asymptotically approached by an orbit that whirls an infinite number of times, known as a homoclinic orbit. A homoclinic trajectory is an infinite whirl limit of the zoom-whirl spectrum and has a further significance as the separatrix between inspiral and plunge for eccentric orbits. We work in the context of two spinning black holes of comparable mass as described in the 3PN Hamiltonian with spin-orbit coupling included. As such, the results could provide a testing ground of the accuracy of the PN expansion. Further, the spherical orbits could provide useful initial data for numerical relativity. Finally, we comment that the spinning black hole pairs should give way to chaos around the homoclinic orbit when spin-spin coupling is incorporated.Comment: 16 pages, several figure

    Brane-World Motion in Compact Dimensions

    Full text link
    The topology of extra dimensions can break global Lorentz invariance,singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast
    corecore